Sameer Singh
Sameer Singh
Associate Professor, UC Irvine
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
MT Ribeiro, S Singh, C Guestrin
Knowledge Discovery and Data Mining (KDD), 2016
Anchors: High-precision model-agnostic explanations
MT Ribeiro, S Singh, C Guestrin
Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018
AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts
T Shin, Y Razeghi, RL Logan IV, E Wallace, S Singh
Empirical Methods in Natural Language Processing (EMNLP), 2020
Model-Agnostic Interpretability of Machine Learning
MT Ribeiro, S Singh, C Guestrin
ICML 2016 Workshop on Human Interpretability in Machine Learning, 2016
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList
MT Ribeiro, T Wu, C Guestrin, S Singh
arXiv preprint arXiv:2005.04118, 2020
Calibrate before use: Improving few-shot performance of language models
Z Zhao, E Wallace, S Feng, D Klein, S Singh
International Conference on Machine Learning, 12697-12706, 2021
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
D Slack, S Hilgard, E Jia, S Singh, H Lakkaraju
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 180-186, 2020
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
D Dua, Y Wang, P Dasigi, G Stanovsky, S Singh, M Gardner
Annual Conference of the North American Chapter of the Association for …, 2019
Universal Adversarial Triggers for Attacking and Analyzing NLP
E Wallace, S Feng, N Kandpal, M Gardner, S Singh
Empirical Methods in Natural Language Processing (EMNLP), 2019
Knowledge enhanced contextual word representations
ME Peters, M Neumann, RL Logan IV, R Schwartz, V Joshi, S Singh, ...
arXiv preprint arXiv:1909.04164, 2019
Generating Natural Adversarial Examples
Z Zhao, D Dua, S Singh
International Conference on Learning Representations (ICLR), 2018
Semantically Equivalent Adversarial Rules for Debugging NLP Models
MT Ribeiro, S Singh, C Guestrin
Annual Meeting of the Association for Computational Linguistics (ACL), 2018
Evaluating models’ local decision boundaries via contrast sets
M Gardner, Y Artzi, V Basmov, J Berant, B Bogin, S Chen, P Dasigi, D Dua, ...
Proceedings of the 2020 Conference on Empirical Methods in Natural Language …, 2020
Injecting logical background knowledge into embeddings for relation extraction
T Rocktäschel, S Singh, S Riedel
Proceedings of the 2015 Human Language Technology Conference of the North …, 2015
Factorie: Probabilistic programming via imperatively defined factor graphs
A McCallum, K Schultz, S Singh
Advances in Neural Information Processing Systems 22, 1249-1257, 2009
Do NLP Models Know Numbers? Probing Numeracy in Embeddings
E Wallace, Y Wang, S Li, S Singh, M Gardner
arXiv preprint arXiv:1909.07940, 2019
Entity linking via joint encoding of types, descriptions, and context
N Gupta, S Singh, D Roth
Proceedings of the 2017 Conference on Empirical Methods in Natural Language …, 2017
Design challenges for entity linking
X Ling, S Singh, DS Weld
Transactions of the Association for Computational Linguistics 3, 315-328, 2015
Barack’s Wife Hillary: Using Knowledge Graphs for Fact-Aware Language Modeling
RL Logan IV, NF Liu, ME Peters, M Gardner, S Singh
Proceedings of the 2019 Conference of the Association for Computational …, 2019
COVIDLIES: Detecting COVID-19 Misinformation on Social Media
T Hossain, RL Logan IV, A Ugarte, Y Matsubara, S Young, S Singh
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020, 2020
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20