Folgen
Carlos Eiras-Franco
Carlos Eiras-Franco
Investigador postdoctoral, Universidade da Coruña
Bestätigte E-Mail-Adresse bei udc.es - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Multithreaded and Spark parallelization of feature selection filters
C Eiras-Franco, V Bolón-Canedo, S Ramos, J González-Domínguez, ...
Journal of Computational Science 17, 609-619, 2016
492016
Large scale anomaly detection in mixed numerical and categorical input spaces
C Eiras-Franco, D Martinez-Rego, B Guijarro-Berdinas, ...
Information Sciences 487, 115-127, 2019
362019
Scalable feature selection using ReliefF aided by locality‐sensitive hashing
C Eiras‐Franco, B Guijarro‐Berdiñas, A Alonso‐Betanzos, A Bahamonde
International Journal of Intelligent Systems 36 (11), 6161-6179, 2021
292021
A scalable decision-tree-based method to explain interactions in dyadic data
C Eiras-Franco, B Guijarro-Berdinas, A Alonso-Betanzos, A Bahamonde
Decision Support Systems 127, 113141, 2019
282019
Fast anomaly detection with locality-sensitive hashing and hyperparameter autotuning
J Meira, C Eiras-Franco, V Bolón-Canedo, G Marreiros, ...
Information Sciences 607, 1245-1264, 2022
142022
Fast Distributed kNN Graph Construction Using Auto-tuned Locality-sensitive Hashing
C Eiras-Franco, D Martínez-Rego, L Kanthan, C Piñeiro, A Bahamonde, ...
ACM Transactions on Intelligent Systems and Technology (TIST) 11 (6), 1-18, 2020
132020
Regression tree based explanation for anomaly detection algorithm
ILR Botana, C Eiras-Franco, A Alonso-Betanzos
Proceedings 54 (1), 7, 2020
102020
Case study of anomaly detection and quality control of energy efficiency and hygrothermal comfort in buildings
C Eiras-Franco, M Flores, V Bolón-Canedo, S Zaragoza, ...
8th International Conference on Data Science, Technology and Applications …, 2019
52019
Scalable approximate k-NN Graph construction based on Locality Sensitive Hashing.
C Eiras-Franco, L Kanthan, A Alonso-Betanzos, D Martínez-Rego
ESANN, 2017
42017
A novel framework for generic Spark workload characterization and similar pattern recognition using machine learning
M Garralda-Barrio, C Eiras-Franco, V Bolón-Canedo
Journal of Parallel and Distributed Computing 189, 104881, 2024
22024
Beyond RMSE and MAE: Introducing EAUC to unmask hidden bias and unfairness in dyadic regression models
J Paz-Ruza, A Alonso-Betanzos, B Guijarro-Berdiñas, B Cancela, ...
arXiv preprint arXiv:2401.10690, 2024
22024
Sustainable personalisation and explainability in dyadic data systems
J Paz-Ruza, C Eiras-Franco, B Guijarro-Berdiñas, A Alonso-Betanzos
Procedia Computer Science 207, 1017-1026, 2022
22022
Preprocessing in high dimensional datasets
A Alonso-Betanzos, V Bolón-Canedo, C Eiras-Franco, ...
Advances in Biomedical Informatics, 247-271, 2018
22018
Paralelización de algoritmos de selección de caracterıticas en la plataforma weka
C Eiras-Franco, V Bolón-Canedo, S Ramos, J González-Domınguez, ...
CAEPIA 2015, 949-958, 2015
22015
Sustainable transparency on recommender systems: Bayesian ranking of images for explainability
J Paz-Ruza, A Alonso-Betanzos, B Guijarro-Berdiñas, B Cancela, ...
Information Fusion, 102497, 2024
12024
Predictive Maintenance of Naval Assets Using Machine Learning Techniques
F LAMAS-LÓPEZ, D Novoa Paradela, C Eiras Franco, ...
Proceedings of the STO-MP-SAS-OCS-ORA-2021 NATO Conference. AIML-03 Section, 2022
12022
New scalable machine learning methods: Beyond classification and regression
C Eiras-Franco
12019
Interpretable market segmentation on high dimension data
C Eiras-Franco, B Guijarro-Berdiñas, A Alonso-Betanzos, A Bahamonde
MDPI AG Proceedings 18 (2), 1171, 2018
12018
Seleccion de caracterısticas escalable con ReliefF mediante el uso de hashing sensible a la localidad
C Eiras‐Franco, B Guijarro‐Berdinas, A Alonso‐Betanzos, A Bahamonde
XVIII Conferencia de la Asociación, 2018
12018
Performance and sustainability of BERT derivatives in dyadic data
M Escarda, C Eiras-Franco, B Cancela, B Guijarro-Berdiñas, ...
Expert Systems with Applications 262, 125647, 2025
2025
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20