Folgen
Alexandra M Carvalho
Alexandra M Carvalho
Assistant Professor, Instituto Superior Técnico, Technical University of Lisbon
Bestätigte E-Mail-Adresse bei tecnico.ulisboa.pt - Startseite
Titel
Zitiert von
Zitiert von
Jahr
YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae
PT Monteiro, ND Mendes, MC Teixeira, S d’Orey, S Tenreiro, NP Mira, ...
Nucleic acids research 36 (suppl_1), D132-D136, 2007
1992007
RISOTTO: Fast extraction of motifs with mismatches
N Pisanti, AM Carvalho, L Marsan, MF Sagot
LATIN 2006: Theoretical Informatics, 757-768, 2006
1372006
Scoring functions for learning Bayesian networks
AM Carvalho
Inesc-id Tec. Rep 12, 1-48, 2009
1322009
An efficient algorithm for the identification of structured motifs in DNA promoter sequences
AM Carvalho, AT Freitas, AL Oliveira, MF Sagot
IEEE/ACM Transactions on Computational Biology and Bioinformatics 3 (2), 126-140, 2006
772006
Discriminative Learning of Bayesian Networks via Factorized Conditional Log-Likelihood
AM Carvalho, T Roos, AL Oliveira, P Myllymäki
The Journal of Machine Learning Research 7, 2181-2210, 2011
722011
A highly scalable algorithm for the extraction of cis-regulatory regions
AM Carvalho, AT Freitas, AL Oliveira, MF Sagot
Proceedings Of The 3rd Asia-Pacific Bioinformatics Conference, 273-282, 2005
662005
A parallel algorithm for the extraction of structured motifs
AM Carvalho, AL Oliveira, AT Freitas, MF Sagot
Proceedings of the 2004 ACM symposium on Applied computing, 147-153, 2004
432004
Pattern matching through Chaos Game Representation: bridging numerical and discrete data structures for biological sequence analysis
S Vinga, AM Carvalho, AP Francisco, LMS Russo, JS Almeida
Algorithms for Molecular Biology 7, 1-12, 2012
412012
Efficient extraction of structured motifs using box-links
AM Carvalho, AT Freitas, AL Oliveira, MF Sagot
String Processing and Information Retrieval, 51-68, 2004
302004
Efficient Learning of Bayesian Network Classifiers
AM Carvalho, AL Oliveira, MF Sagot
AI 2007: Advances in Artificial Intelligence, 16-25, 2007
27*2007
Learning dynamic Bayesian networks from time-dependent and time-independent data: Unraveling disease progression in Amyotrophic Lateral Sclerosis
T Leao, SC Madeira, M Gromicho, M de Carvalho, AM Carvalho
Journal of Biomedical Informatics 117, 103730, 2021
222021
Efficient approximation of the conditional relative entropy with applications to discriminative learning of Bayesian network classifiers
AM Carvalho, P Adao, P Mateus
Entropy 15 (7), 2716-2735, 2013
222013
Towards a smart city security model exploring smart cities elements based on nowadays solutions
F Ferraz, C Sampaio, C Ferraz, G Alexandre, A Carvalho
ICSEA 2013, 546-550, 2013
212013
Polynomial-time algorithm for learning optimal tree-augmented dynamic Bayesian networks
JL Monteiro, S Vinga, AM Carvalho
31st Conference on Uncertainty in Artificial Intelligence (UAI'15), 622-631, 2015
172015
Learning Bayesian networks consistent with the optimal branching
AM Carvalho, AL Oliveira
Sixth International Conference on Machine Learning and Applications (ICMLA …, 2007
162007
Hybrid learning of Bayesian multinets for binary classification
AM Carvalho, P Adao, P Mateus
Pattern recognition 47 (10), 3438-3450, 2014
152014
AliClu-Temporal sequence alignment for clustering longitudinal clinical data
K Rama, H Canhão, AM Carvalho, S Vinga
BMC medical informatics and decision making 19, 1-11, 2019
122019
Outlier detection in survival analysis based on the concordance c-index
JD Pinto, AM Carvalho, S Vinga
6th International Conference on BIOINFORMATICS, 75-82, 2015
122015
Class imbalance in the prediction of dementia from neuropsychological data
C Nunes, D Silva, M Guerreiro, A Mendonça, AM Carvalho, SM Madeira
Progress in Artificial Intelligence, Selected Papers from EPIA'13, LNCS 8154 …, 2013
122013
Polynomial-time algorithm for learning optimal BFS-consistent dynamic bayesian networks
M Sousa, AM Carvalho
Entropy 20 (4), 274, 2018
102018
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20