Tool life predictions in milling using spindle power with the neural network technique C Drouillet, J Karandikar, C Nath, AC Journeaux, M El Mansori, T Kurfess Journal of Manufacturing Processes 22, 161-168, 2016 | 229 | 2016 |
Tool wear monitoring using naive Bayes classifiers J Karandikar, T McLeay, S Turner, T Schmitz The International Journal of Advanced Manufacturing Technology 77, 1613-1626, 2015 | 112 | 2015 |
Artificial intelligence/machine learning in manufacturing and inspection: A GE perspective KS Aggour, VK Gupta, D Ruscitto, L Ajdelsztajn, X Bian, KH Brosnan, ... MRS Bulletin 44 (7), 545-558, 2019 | 93 | 2019 |
Tool life prediction using Bayesian updating. Part 2: Turning tool life using a Markov Chain Monte Carlo approach JM Karandikar, AE Abbas, TL Schmitz Precision Engineering 38 (1), 18-27, 2014 | 84 | 2014 |
Prediction of remaining useful life for fatigue-damaged structures using Bayesian inference JM Karandikar, NH Kim, TL Schmitz Engineering Fracture Mechanics 96, 588-605, 2012 | 78 | 2012 |
Tool life prediction using Bayesian updating. Part 1: Milling tool life model using a discrete grid method JM Karandikar, AE Abbas, TL Schmitz Precision Engineering 38 (1), 9-17, 2014 | 74 | 2014 |
Stability boundary and optimal operating parameter identification in milling using Bayesian learning J Karandikar, A Honeycutt, T Schmitz, S Smith Journal of Manufacturing Processes 56, 1252-1262, 2020 | 51 | 2020 |
Uncertainty in machining: Workshop summary and contributions TL Schmitz, J Karandikar, N Ho Kim, A Abbas | 44 | 2011 |
Physics-guided logistic classification for tool life modeling and process parameter optimization in machining J Karandikar, T Schmitz, S Smith Journal of Manufacturing Systems 59, 522-534, 2021 | 35 | 2021 |
Machine learning classification for tool life modeling using production shop-floor tool wear data J Karandikar Procedia Manufacturing 34, 446-454, 2019 | 33 | 2019 |
Spindle speed selection for tool life testing using Bayesian inference JM Karandikar, TL Schmitz, AE Abbas Journal of manufacturing systems 31 (4), 403-411, 2012 | 27 | 2012 |
Tool life predictions using random walk Bayesian updating JM Karandikar, AE Abbas, TL Schmitz Machining Science and Technology: An International Journal 17 (3), 2013 | 24 | 2013 |
Receptance coupling substructure analysis and chatter frequency-informed machine learning for milling stability T Schmitz, A Cornelius, J Karandikar, C Tyler, S Smith CIRP Annals 71 (1), 321-324, 2022 | 23 | 2022 |
Application of Bayesian inference to milling force modeling JM Karandikar, TL Schmitz, AE Abbas Journal of Manufacturing Science and Engineering 136 (2), 021017, 2014 | 21 | 2014 |
Remaining useful life predictions in turning using Bayesian inference JM Karandikar, AE Abbas, TL Schmitz International Journal of Prognostics and Health Management (IJPHM) 4 (2), 25 …, 2013 | 18* | 2013 |
Bayesian inference for milling stability using a random walk approach J Karandikar, M Traverso, A Abbas, T Schmitz Journal of Manufacturing Science and Engineering 136 (3), 031015, 2014 | 17 | 2014 |
A Bayesian framework for milling stability prediction and reverse parameter identification A Cornelius, J Karandikar, M Gomez, T Schmitz Procedia Manufacturing 53, 760-772, 2021 | 14 | 2021 |
Milling stability identification using Bayesian machine learning J Karandikar, A Honeycutt, S Smith, T Schmitz Procedia CIRP 93, 1423-1428, 2020 | 14 | 2020 |
Value of information-based experimental design: Application to process damping in milling JM Karandikar, CT Tyler, A Abbas, TL Schmitz Precision Engineering 38 (4), 799-808, 2014 | 14 | 2014 |
Cost optimization and experimental design in milling using surrogate models and value of information J Karandikar, T Kurfess Journal of Manufacturing Systems 37, 479-486, 2015 | 13 | 2015 |