Folgen
Kevin J Liang
Kevin J Liang
Fundamental AI Research (FAIR) at Meta
Bestätigte E-Mail-Adresse bei meta.com - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Towards Fair Federated Learning with Zero-Shot Data Augmentation
W Hao, M El-Khamy, J Lee, J Zhang, KJ Liang, C Chen, L Carin
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
1032021
Transferable Perturbations of Deep Feature Distributions
N Inkawhich, KJ Liang, L Carin, Y Chen
International Conference on Learning Representations, 2020
902020
Perturbing Across the Feature Hierarchy to Improve Standard and Strict Blackbox Attack Transferability
N Inkawhich, KJ Liang, B Wang, M Inkawhich, L Carin, Y Chen
Advances in Neural Information Processing Systems, 20791-20801, 2020
842020
Efficient feature transformations for discriminative and generative continual learning
VK Verma, KJ Liang, N Mehta, P Rai, L Carin
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021
722021
MixKD: Towards Efficient Distillation of Large-scale Language Models
KJ Liang, W Hao, D Shen, Y Zhou, W Chen, C Chen, L Carin
International Conference on Learning Representations, 2021
682021
A Multiplexed Network for End-to-end, Multilingual OCR
J Huang, G Pang, R Kovvuri, M Toh, KJ Liang, P Krishnan, X Yin, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
552021
Toward Automatic Threat Recognition for Airport X-ray Baggage Screening with Deep Convolutional Object Detection
KJ Liang, JB Sigman, GP Spell, D Strellis, W Chang, F Liu, T Mehta, ...
Denver X-ray Conference, 2020
542020
Generative Adversarial Network Training is a Continual Learning Problem
KJ Liang, C Li, G Wang, L Carin
Neural Information Processing Systems, Continual Learning Workshop, 2018
542018
Ego-Exo4d: Understanding Skilled Human Activity from First-and Third-person Perspectives
K Grauman, A Westbury, L Torresani, K Kitani, J Malik, T Afouras, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
532024
Few-shot Learning with Noisy Labels
KJ Liang, SB Rangrej, V Petrovic, T Hassner
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
492022
Sylph: A hypernetwork framework for incremental few-shot object detection
L Yin, JM Perez-Rua, KJ Liang
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2022
472022
Automatic Threat Recognition of Prohibited Items at Aviation Checkpoints with X-ray Imaging: A Deep Learning Approach
KJ Liang, G Heilmann, C Gregory, SO Diallo, D Carlson, GP Spell, ...
Anomaly Detection and Imaging with X-Rays (ADIX) III 10632, 1063203, 2018
472018
Object Detection as a Positive-Unlabeled Problem
Y Yang, KJ Liang, L Carin
British Machine Vision Conference, 2020
392020
Continual learning using a bayesian nonparametric dictionary of weight factors
N Mehta, K Liang, VK Verma, L Carin
International Conference on Artificial Intelligence and Statistics, 100-108, 2021
35*2021
Background Adaptive Faster R-CNN for Semi-Supervised Convolutional Object Detection of Threats in X-ray Images
JB Sigman, GP Spell, KJ Liang, L Carin
Anomaly Detection and Imaging with X-Rays (ADIX) V 11404, 1140404, 2020
222020
WAFFLe: Weight Anonymized Factorization for Federated Learning
W Hao, N Mehta, KJ Liang, P Cheng, M El-Khamy, L Carin
IEEE Access, 2022
172022
Extending one-stage detection with open-world proposals
S Konan, KJ Liang, L Yin
arXiv preprint arXiv:2201.02302, 2022
112022
Meta-Learned Attribute Self-Interaction Network for Continual and Generalized Zero-Shot Learning
V Verma, N Mehta, KJ Liang, A Mishra, L Carin
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2024
8*2024
EgoTracks: A Long-term Egocentric Visual Object Tracking Dataset
H Tang, K Liang, K Grauman, M Feiszli, W Wang
arXiv preprint arXiv:2301.03213, 2023
82023
Kernel-Based Approaches for Sequence Modeling: Connections to Neural Methods
K Liang, G Wang, Y Li, R Henao, L Carin
Advances in Neural Information Processing Systems, 3392-3403, 2019
72019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20