Folgen
Gerben Beintema
Titel
Zitiert von
Zitiert von
Jahr
Controlling Rayleigh–Bénard convection via reinforcement learning
G Beintema, A Corbetta, L Biferale, F Toschi
Journal of Turbulence 21 (9-10), 585-605, 2020
672020
Nonlinear state-space identification using deep encoder networks
G Beintema, R Toth, M Schoukens
Learning for dynamics and control, 241-250, 2021
292021
Non-linear state-space model identification from video data using deep encoders
GI Beintema, R Toth, M Schoukens
IFAC-PapersOnLine 54 (7), 697-701, 2021
112021
Deep identification of nonlinear systems in Koopman form
LC Iacob, GI Beintema, M Schoukens, R Tóth
2021 60th IEEE Conference on Decision and Control (CDC), 2288-2293, 2021
102021
Identification of the nonlinear steering dynamics of an autonomous vehicle
G Rödönyi, GI Beintema, R Tóth, M Schoukens, D Pup, Á Kisari, Z Vígh, ...
IFAC-PapersOnLine 54 (7), 708-713, 2021
52021
Deep subspace encoders for nonlinear system identification
GI Beintema, M Schoukens, R Tóth
Automatica 156, 111210, 2023
42023
Deep-learning-based identification of lpv models for nonlinear systems
C Verhoek, GI Beintema, S Haesaert, M Schoukens, R Tóth
2022 IEEE 61st Conference on Decision and Control (CDC), 3274-3280, 2022
42022
NARX identification using derivative-based regularized neural networks
LH Peeters, GI Beintema, M Forgione, M Schoukens
2022 IEEE 61st Conference on Decision and Control (CDC), 1515-1520, 2022
12022
Continuous-time identification of dynamic state-space models by deep subspace encoding
GI Beintema, M Schoukens, R Tóth
arXiv preprint arXiv:2204.09405, 2022
12022
Reinforcement learning versus linear control of Rayleigh-Bénard convection
A Corbetta, G Beintema, L Biferale, P Kumar, F Toschi
APS Division of Fluid Dynamics Meeting Abstracts, P17. 006, 2019
12019
Meta-State-Space Learning: An Identification Approach for Stochastic Dynamical Systems
GI Beintema, M Schoukens, R Tóth
arXiv preprint arXiv:2307.06675, 2023
2023
Identifying a simulation model of an industrial robot
A Retzler, R Tóth, GI Beintema, JP Noël, M Schoukens, J Weigand, ...
7th Edition of the Workshop on Nonlinear System Identification Benchmarks …, 2023
2023
Output error port Hamiltonian neural networks: a Silverbox example
S Moradi, GI Beintema, NO Jaensson, R Tóth, M Schoukens
2023 Workshop on Nonlinear System Identification Benchmarks, 2023
2023
Initialization Approach for Nonlinear State-Space Identification via the Subspace Encoder Approach
R Ramkannan, GI Beintema, R Tóth, M Schoukens
arXiv preprint arXiv:2304.02119, 2023
2023
Computationally efficient predictive control based on ANN state-space model
JH Hoekstra, B Cseppentő, GI Beintema, M Schoukens, Z Kollár, R Tóth
arXiv preprint arXiv:2303.17305, 2023
2023
Augmented model identification for forward simulation of a robot arm
A Retzler, R Tóth, J Swevers, JP Noël, Z Kollár, GI Beintema, J Weigand, ...
Benelux Meeting on Systems and Control 2023, Location: Elspeet, The Netherlands, 2023
2023
Learning-Based Model-Augmentation of Nonlinear Approximative Models using the Sub-Space Encoder
C Verhoek, GI Beintema, S Haesaert, M Schoukens, R Tóth
41st Benelux Meeting on Systems and Control 2022, 52-52, 2022
2022
Learning-based augmentation of mechatronic system models by deep subspace encoders
A Retzler, G Beintema, M Schoukens, T Roland, J Swevers, Z Kollár
Benelux Meeting on Systems and Control 2022, Location: Brussels, Belgium, 2022
2022
Continuous-time identification of dynamic state-space models by deep subspace encoding
GI Beintema, M Schoukens, R Tóth
arXiv preprint arXiv:2204.09405, 2022
2022
Deep Learning-based Identification of Koopman Models with Inputs
LC Iacob, GI Beintema, M Schoukens, R Tóth
2022
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20