Folgen
Chaoyue Niu
Chaoyue Niu
Bestätigte E-Mail-Adresse bei sjtu.edu.cn - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Billion-scale federated learning on mobile clients: A submodel design with tunable privacy
C Niu, F Wu, S Tang, L Hua, R Jia, C Lv, Z Wu, G Chen
Proceedings of the 26th Annual International Conference on Mobile Computing …, 2020
1232020
Unlocking the value of privacy: Trading aggregate statistics over private correlated data
C Niu, Z Zheng, F Wu, S Tang, X Gao, G Chen
Proceedings of the 24th ACM SIGKDD international conference on knowledge …, 2018
862018
Achieving data truthfulness and privacy preservation in data markets
C Niu, Z Zheng, F Wu, X Gao, G Chen
IEEE Transactions on Knowledge and Data Engineering 31 (1), 105-119, 2019
562019
From Server-Based to Client-Based Machine Learning: A Comprehensive Survey
R Gu, C Niu, F Wu, G Chen, C Hu, C Lv, Z Wu
ACM Computing Surveys 54 (1), 6:1-6:36, 2021
54*2021
Making big money from small sensors: Trading time-series data under pufferfish privacy
C Niu, Z Zheng, S Tang, X Gao, F Wu
Proceedings of IEEE International Conference on Computer Communications …, 2019
542019
Trading data in good faith: Integrating truthfulness and privacy preservation in data markets
C Niu, Z Zheng, F Wu, X Gao, G Chen
2017 IEEE 33rd International Conference on Data Engineering (ICDE), 223-226, 2017
532017
Online pricing with reserve price constraint for personal data markets
C Niu, Z Zheng, F Wu, S Tang, G Chen
IEEE Transactions on Knowledge and Data Engineering 34 (4), 1928-1943, 2022
452022
Toward Verifiable and Privacy Preserving Machine Learning Prediction
C Niu, F Wu, S Tang, S Ma, G Chen
IEEE Transactions on Dependable and Secure Computing 19 (3), 1703-1721, 2022
382022
Toward Understanding the Influence of Individual Clients in Federated Learning
Y Xue, C Niu, Z Zheng, S Tang, C Lv, F Wu, G Chen
Proceedings of the AAAI Conference on Artificial Intelligence 35 (12), 10560 …, 2021
362021
Federated optimization under intermittent client availability
Y Yan, C Niu, Y Ding, Z Zheng, S Tang, Q Li, F Wu, C Lyu, Y Feng, ...
INFORMS Journal on Computing 36 (1), 185-202, 2024
352024
Walle: An End-to-End, General-Purpose, and Large-Scale Production System for Device-Cloud Collaborative Machine Learning
C Lv, C Niu, R Gu, X Jiang, Z Wang, B Liu, Z Wu, Q Yao, C Huang, ...
16th USENIX Symposium on Operating Systems Design and Implementation (OSDI …, 2022
282022
Secure federated submodel learning
C Niu, F Wu, S Tang, L Hua, R Jia, C Lv, Z Wu, G Chen
arXiv preprint arXiv:1911.02254, 2019
262019
ERATO: Trading Noisy Aggregate Statistics over Private Correlated Data
C Niu, Z Zheng, F Wu, S Tang, X Gao, G Chen
IEEE Transactions on Knowledge and Data Engineering 33 (3), 975-990, 2021
202021
On-device learning for model personalization with large-scale cloud-coordinated domain adaption
Y Yan, C Niu, R Gu, F Wu, S Tang, L Hua, C Lyu, G Chen
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and …, 2022
192022
Pricing GAN-based data generators under Rényi differential privacy
X Jiang, C Niu, C Ying, F Wu, Y Luo
Information Sciences 602, 57-74, 2022
162022
Distributed optimization over block-cyclic data
Y Ding, C Niu, Y Yan, Z Zheng, F Wu, G Chen, S Tang, R Jia
arXiv preprint arXiv:2002.07454, 2020
162020
Active client selection for clustered federated learning
H Huang, W Shi, Y Feng, C Niu, G Cheng, J Huang, Z Liu
IEEE Transactions on Neural Networks and Learning Systems, 2023
142023
ERA: Towards privacy preservation and verifiability for online ad exchanges
C Niu, M Zhou, Z Zheng, F Wu, G Chen
Journal of Network and Computer Applications 98, 1-10, 2017
102017
On-Device Learning with Cloud-Coordinated Data Augmentation for Extreme Model Personalization in Recommender Systems
R Gu, C Niu, Y Yan, F Wu, S Tang, R Jia, C Lyu, G Chen
arXiv preprint arXiv:2201.10382, 2022
62022
An efficient, privacy-preserving, and verifiable online auction mechanism for Ad exchanges
M Zhou, C Niu, Z Zheng, F Wu, G Chen
2015 IEEE Global Communications Conference (GLOBECOM), 1-6, 2015
62015
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20