Folgen
Yarin Gal
Yarin Gal
Associate Professor, University of Oxford
Bestätigte E-Mail-Adresse bei cs.ox.ac.uk - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Dropout as a Bayesian approximation: Representing model uncertainty in deep learning
Y Gal, Z Ghahramani
Proceedings of the 33rd International Conference on Machine Learning (ICML-16), 2015
112742015
What uncertainties do we need in Bayesian deep learning for computer vision?
A Kendall, Y Gal
Advances in neural information processing systems, 5574-5584, 2017
58122017
Multi-task learning using uncertainty to weigh losses for scene geometry and semantics
A Kendall, Y Gal, R Cipolla
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
37392018
Uncertainty in Deep Learning
Y Gal
University of Cambridge, 2016
21332016
A theoretically grounded application of dropout in recurrent neural networks
Y Gal, Z Ghahramani
Advances in neural information processing systems 29, 1019-1027, 2016
20882016
Deep Bayesian Active Learning with Image Data
Y Gal, R Islam, Z Ghahramani
International Conference on Machine Learning (ICML), 1183-1192, 2017
20522017
Inferring the effectiveness of government interventions against COVID-19
JM Brauner, S Mindermann, M Sharma, D Johnston, J Salvatier, ...
Science 371 (6531), eabd9338, 2021
10502021
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y Gal, Z Ghahramani
4th International Conference on Learning Representations (ICLR) workshop track, 2015
9782015
Concrete dropout
Y Gal, J Hron, A Kendall
Advances in Neural Information Processing Systems, 3581-3590, 2017
7612017
Real time image saliency for black box classifiers
P Dabkowski, Y Gal
Advances in Neural Information Processing Systems, 6967-6976, 2017
7492017
BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning
A Kirsch, J van Amersfoort, Y Gal
Advances in Neural Information Processing Systems, 2019, 2019
6802019
Disease variant prediction with deep generative models of evolutionary data
J Frazer, P Notin, M Dias, A Gomez, JK Min, K Brock, Y Gal, DS Marks
Nature 599 (7883), 91-95, 2021
5412021
Uncertainty estimation using a single deep deterministic neural network
J van Amersfoort, L Smith, YW Teh, Y Gal
International Conference on Machine Learning (ICML), 2020
5362020
Learning Invariant Representations for Reinforcement Learning without Reconstruction
A Zhang, R McAllister, R Calandra, Y Gal, S Levine
International Conference on Learning Representations (ICLR), 2020
5122020
Understanding Measures of Uncertainty for Adversarial Example Detection
L Smith, Y Gal
Uncertainty in Artificial Intelligence (UAI), 2018
4202018
Concrete problems for autonomous vehicle safety: Advantages of Bayesian deep learning
R McAllister, Y Gal, A Kendall, M van der Wilk, A Shah, R Cipolla, ...
International Joint Conferences on Artificial Intelligence (IJCAI), 2017
413*2017
Towards Robust Evaluations of Continual Learning
S Farquhar, Y Gal
Lifelong Learning: A Reinforcement Learning Approach workshop, ICML, 2018, 2018
3312018
Improving PILCO with Bayesian neural network dynamics models
Y Gal, R McAllister, CE Rasmussen
Data-Efficient Machine Learning workshop, ICML, 2016
3272016
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
ME Khan, D Nielsen, V Tangkaratt, W Lin, Y Gal, A Srivastava
ICML, 2018, 2018
3192018
Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation in Natural Language Generation
L Kuhn, Y Gal, S Farquhar
arXiv preprint arXiv:2302.09664, 2023
2982023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20