Folgen
Zheng Xu
Titel
Zitiert von
Zitiert von
Jahr
Advances and open problems in federated learning
P Kairouz, HB McMahan, B Avent, A Bellet, M Bennis, AN Bhagoji, ...
arXiv preprint arXiv:1912.04977, 2019
53552019
Visualizing the loss landscape of neural nets
H Li, Z Xu, G Taylor, C Studer, T Goldstein
Advances in Neural Information Processing Systems, 6391-6401, 2018
19042018
Adversarial Training for Free!
A Shafahi, M Najibi, A Ghiasi, Z Xu, J Dickerson, C Studer, LS Davis, ...
Conference on Neural Information Processing Systems (NeurIPS), 2019
13472019
A Field Guide to Federated Optimization
J Wang, Z Charles, Z Xu, G Joshi, HB McMahan, M Al-Shedivat, G Andrew, ...
arXiv preprint arXiv:2107.06917, 2021
3182021
Training neural networks without gradients: A scalable ADMM approach
G Taylor, R Burmeister, Z Xu, B Singh, A Patel, T Goldstein
International Conference on Machine Learning (ICML), 2722-2731, 2016
3072016
Towards Perceptual Image Dehazing by Physics-based Disentanglement and Adversarial Training
X Yang, Z Xu, J Luo
AAAI Conference on Artificial Intelligence (AAAI), 2018
2442018
Training Quantized Nets: A Deeper Understanding
H Li, S De, Z Xu, C Studer, H Samet, T Goldstein
Conference on Neural Information Processing Systems (NIPS), 2017
2332017
Universal Adversarial Training
A Shafahi, M Najibi, Z Xu, J Dickerson, LS Davis, T Goldstein
AAAI Conference on Artificial Intelligence (AAAI), 2020
2122020
Exploiting Low-Rank Structure from Latent Domains for Domain Generalization
Z Xu, W Li, L Niu, D Xu
European Conference on Computer Vision (ECCV), 628-643, 2014
2022014
Training Shallow and Thin Networks for Acceleration via Knowledge Distillation with Conditional Adversarial Networks
Z Xu, YC Hsu, J Huang
arXiv preprint arXiv:1709.00513, 2017
168*2017
Practical and Private (Deep) Learning without Sampling or Shuffling
P Kairouz, B McMahan, S Song, O Thakkar, A Thakurta, Z Xu
International Conference on Machine Learning (ICML), 2021
1332021
Domain Generalization and Adaptation using Low Rank Exemplar SVMs
W Li, Z Xu, D Xu, D Dai, LV Gool
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2017
1292017
Adaptive ADMM with Spectral Penalty Parameter Selection
Z Xu, MAT Figueiredo, T Goldstein
International Conference on Artificial Intelligence and Statistics (AISTATS), 2017
1222017
Stabilizing Adversarial Nets With Prediction Methods
A Yadav, S Shah, Z Xu, D Jacobs, T Goldstein
International Conference on Learning Representations (ICLR), 2018
1122018
The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent
KA Sankararaman, S De, Z Xu, WR Huang, T Goldstein
International Conference on Machine Learning (ICML), 2020
1082020
Adaptive Consensus ADMM for Distributed Optimization
Z Xu, G Taylor, H Li, M Figueiredo, X Yuan, T Goldstein
International Conference on Machine Learning (ICML), 2017
792017
How to dp-fy ml: A practical guide to machine learning with differential privacy
N Ponomareva, H Hazimeh, A Kurakin, Z Xu, C Denison, HB McMahan, ...
Journal of Artificial Intelligence Research 77, 1113-1201, 2023
752023
Learning to Cluster for Proposal-Free Instance Segmentation
YC Hsu, Z Xu, Z Kira, J Huang
2018 International Joint Conference on Neural Networks (IJCNN), 1-8, 2018
652018
Mining Visualness
Z Xu, XJ Wang, CW Chen
IEEE International Conference on Multimedia and Expo (ICME), 2013
65*2013
GradInit: Learning to Initialize Neural Networks for Stable and Efficient Training
C Zhu, R Ni, Z Xu, K Kong, WR Huang, T Goldstein
Conference on Neural Information Processing Systems (NeurIPS), 2021
632021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20