Jacob Sacks
Jacob Sacks
Bestätigte E-Mail-Adresse bei
Zitiert von
Zitiert von
Differentiable MPC for End-to-end Planning and Control
B Amos, I Jimenez, J Sacks, B Boots, JZ Kolter
“Cut‐and‐Paste” manufacture of multiparametric epidermal sensor systems
S Yang, YC Chen, L Nicolini, P Pasupathy, J Sacks, B Su, R Yang, ...
Advanced Materials 27 (41), 6423-6430, 2015
The virtual trackpad: An electromyography-based, wireless, real-time, low-power, embedded hand-gesture-recognition system using an event-driven artificial neural network
X Liu, J Sacks, M Zhang, AG Richardson, TH Lucas, J Van der Spiegel
IEEE Transactions on Circuits and Systems II: Express Briefs 64 (11), 1257-1261, 2016
An Online Learning Approach to Model Predictive Control
N Wagener, CA Cheng, J Sacks, B Boots
arXiv preprint arXiv:1902.08967, 2019
On the presence of affine fibril and fiber kinematics in the mitral valve anterior leaflet
CH Lee, W Zhang, J Liao, CA Carruthers, JI Sacks, MS Sacks
Biophysical journal 108 (8), 2074-2087, 2015
In-RDBMS hardware acceleration of advanced analytics
D Mahajan, JK Kim, J Sacks, A Ardalan, A Kumar, H Esmaeilzadeh
arXiv preprint arXiv:1801.06027, 2018
In-dram near-data approximate acceleration for gpus
A Yazdanbakhsh, C Song, J Sacks, P Lotfi-Kamran, H Esmaeilzadeh, ...
Proceedings of the 27th International Conference on Parallel Architectures …, 2018
RoboX: An End-to-End Solution to Accelerate Autonomous Control in Robotics
J Sacks, D Mahajan, RC Lawson, B Khaleghi, H Esmaeilzadeh
Proceedings of the 45th International Symposium on Computer Architecture, 2018
Learning to Optimize in Model Predictive Control
J Sacks, B Boots
2022 International Conference on Robotics and Automation (ICRA), 10549-10556, 2022
Learning Sampling Distributions for Model Predictive Control
J Sacks, B Boots
6th Annual Conference on Robot Learning, 2022
Deep Model Predictive Optimization
J Sacks, R Rana, K Huang, A Spitzer, G Shi, B Boots
arXiv preprint arXiv:2310.04590, 2023
Learning Novel Strategies for Model Predictive Control by Leveraging Experience
JI Sacks
Machine Learning Methods for Estimating Down-hole Depth of Cut
J Sacks, K Choi, K Bruss, JC Su, S Buerger, A Mazumdar, B Boots
Sandia National Lab (SNL-NM), Albuquerque, NM (United States), 2021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–13