Folgen
Rahul Rade
Rahul Rade
EthonAI
Bestätigte E-Mail-Adresse bei ethon.ai - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Reducing Excessive Margin to Achieve a Better Accuracy vs. Robustness Trade-off
R Rade, SM Moosavi-Dezfooli
International Conference on Learning Representations (ICLR), 2022, 2021
702021
Helper-based adversarial training: Reducing excessive margin to achieve a better accuracy vs. robustness trade-off
R Rade, SM Moosavi-Dezfooli
ICML 2021 Workshop on Adversarial Machine Learning, 2021
702021
This Looks Like That... Does it? Shortcomings of Latent Space Prototype Interpretability in Deep Networks
A Hoffmann*, C Fanconi*, R Rade*, J Kohler
ICML 2021 Workshop on Theoretic Foundation, Criticism, and Application Trend …, 2021
542021
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions
A Modas*, R Rade*, G Ortiz-Jiménez, SM Moosavi-Dezfooli, P Frossard
European Conference on Computer Vision (ECCV), 2022, 2021
392021
Attacker behaviour profiling using stochastic ensemble of hidden Markov models
S Deshmukh, R Rade, DF Kazi
arXiv preprint arXiv:1905.11824, 2019
142019
Tackling toxic online communication with recurrent capsule networks
S Deshmukh, R Rade
2018 Conference on Information and Communication Technology (CICT), 1-7, 2018
112018
Temporal and stochastic modelling of attacker behaviour
R Rade, S Deshmukh, R Nene, AS Wadekar, A Unny
Advances in Data Science: Third International Conference on Intelligent …, 2019
62019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–7