Alexey Zaytsev
Alexey Zaytsev
Assistant professor, Skoltech
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
Application of machine learning to accidents detection at directional drilling
E Gurina, N Klyuchnikov, A Zaytsev, E Romanenkova, K Antipova, I Simon, ...
Journal of Petroleum Science and Engineering 184, 106519, 2020
Data-driven model for the identification of the rock type at a drilling bit
N Klyuchnikov, A Zaytsev, A Gruzdev, G Ovchinnikov, K Antipova, ...
Journal of Petroleum science and Engineering 178, 506-516, 2019
Surrogate modeling of multifidelity data for large samples
EV Burnaev, AA Zaytsev
Journal of Communications Technology & Electronics 60 (12), 1348, 2015
Regression on the basis of nonstationary Gaussian processes with Bayesian regularization
EV Burnaev, ME Panov, AA Zaytsev
Journal of Communications Technology & Electronics 61 (6), 661, 2016
Recurrent convolutional neural networks help to predict location of earthquakes
R Kail, E Burnaev, A Zaytsev
IEEE Geoscience and Remote Sensing Letters, 2021
Large scale variable fidelity surrogate modeling
A Zaytsev, E Burnaev
Annals of Mathematics and Artificial Intelligence, 1-20, 2017
Adversarial attacks on deep models for financial transaction records
I Fursov, M Morozov, N Kaploukhaya, E Kovtun, R Rivera-Castro, ...
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data …, 2021
Minimax Approach to Variable Fidelity Data Interpolation
A Zaytsev, E Burnaev
Artificial Intelligence and Statistics, 652-661, 2017
Real-Time Data-Driven Detection of the Rock-Type Alteration During a Directional Drilling
E Romanenkova, A Zaytsev, N Klyuchnikov, A Gruzdev, K Antipova, ...
IEEE Geoscience and Remote Sensing Letters 17 (11), 1861-1865, 2019
The Bernstein-von Mises theorem for regression based on Gaussian Processes
EV Burnaev, AA Zaytsev, VG Spokoiny
Russ. Math. Surv 68 (5), 954-956, 2013
Properties of the posterior distribution of a regression model based on Gaussian random fields
AA Zaitsev, EV Burnaev, VG Spokoiny
Automation and Remote Control 74 (10), 1645-1655, 2013
Optimising the active muon shield for the SHiP experiment at CERN
A Baranov, E Burnaev, D Derkach, A Filatov, N Klyuchnikov, O Lantwin, ...
Journal of Physics: Conference Series 934 (1), 012050, 2017
Deep Ensembles for Imbalanced Classification
N Kozlovskaia, A Zaytsev
Machine Learning and Applications (ICMLA), 2017 16th IEEE International …, 2017
A Differentiable Language Model Adversarial Attack on Text Classifiers
I Fursov, A Zaytsev, P Burnyshev, E Dmitrieva, N Klyuchnikov, ...
IEEE Access, 2022
Sequence Embeddings Help to Detect Insurance Fraud
I Fursov, E Kovtun, R Rivera-Castro, A Zaytsev, R Khasyanov, M Spindler, ...
IEEE Access 10, 32060-32074, 2022
Properties of the Bayesian parameter estimation of a regression based on Gaussian processes
AA Zaytsev, EV Burnaev, VG Spokoiny
J. Math. Sci 203 (6), 789-798, 2014
Similarity learning for wells based on logging data
E Romanenkova, A Rogulina, A Shakirov, N Stulov, A Zaytsev, ...
Journal of Petroleum Science and Engineering 215, 110690, 2022
Similarity learning for well logs prediction using machine learning algorithms
A Rogulina, A Zaytsev, L Ismailova, D Kovalev, K Katterbauer, A Marsala
International Petroleum Technology Conference, D032S158R005, 2022
Modeling of nonstationary covariance function of gaussian process using decomposition in dictionary of nonlinear functions
E Burnaev, A Zaytsev, M Panov, P Prihodko, Y Yanovich
Information Technologies and Systems–2011, 2-7, 2011
Reliable surrogate modeling of engineering data with more than two levels of fidelity
A Zaytsev
2016 7th International Conference on Mechanical and Aerospace Engineering …, 2016
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20