Folgen
Xia Li
Titel
Zitiert von
Zitiert von
Jahr
Recurrent squeeze-and-excitation context aggregation net for single image deraining
X Li, J Wu, Z Lin, H Liu, H Zha
Proceedings of the European conference on computer vision (ECCV), 254-269, 2018
9432018
Expectation Maximization Attention Networks for Semantic Segmentation
X Li, Z Zhong, J Wu, Y Yang, Z Lin, H Liu
Proceedings of International Conference in Computer Vision (ICCV), 9166-9175, 2019
6962019
Quasi-dense similarity learning for multiple object tracking
J Pang, L Qiu, X Li, H Chen, Q Li, T Darrell, F Yu
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021
4322021
Improving semantic segmentation via decoupled body and edge supervision
X Li, X Li, L Zhang, G Cheng, J Shi, Z Lin, S Tan, Y Tong
European Conference on Computer Vision (ECCV), 435-452, 2020
2982020
Spatial pyramid based graph reasoning for semantic segmentation
X Li, Y Yang, Q Zhao, T Shen, Z Lin, H Liu
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
2102020
Is attention better than matrix decomposition?
Z Geng, MH Guo, H Chen, X Li, K Wei, Z Lin
International Conference on Learning Representations (ICLR), 2020
1612020
Pointflow: Flowing semantics through points for aerial image segmentation
X Li, H He, X Li, D Li, G Cheng, J Shi, L Weng, Y Tong, Z Lin
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
1172021
Towards open vocabulary learning: A survey
J Wu, X Li, S Xu, H Yuan, H Ding, Y Yang, X Li, J Zhang, Y Tong, X Jiang, ...
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024
942024
Prototypical cross-attention networks for multiple object tracking and segmentation
L Ke, X Li, M Danelljan, YW Tai, CK Tang, F Yu
Advances in Neural Information Processing Systems (NeurIPS) 34, 1192-1203, 2021
882021
Sognet: Scene overlap graph network for panoptic segmentation
Y Yang, H Li, X Li, Q Zhao, J Wu, Z Lin
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) 34 (07 …, 2020
792020
Convolutional neural network‐based multi‐label classification of PCB defects
L Zhang, Y Jin, X Yang, X Li, X Duan, Y Sun, H Liu
The Journal of Engineering 2018 (16), 1612-1616, 2018
542018
Towards robust referring image segmentation
J Wu, X Li, X Li, H Ding, Y Tong, D Tao
IEEE Transactions on Image Processing, 2024
352024
Betrayed by captions: Joint caption grounding and generation for open vocabulary instance segmentation
J Wu, X Li, H Ding, X Li, G Cheng, Y Tong, CC Loy
Proceedings of International Conference in Computer Vision (ICCV), 2023
272023
Optimization induced equilibrium networks: An explicit optimization perspective for understanding equilibrium models
X Xie, Q Wang, Z Ling, X Li, G Liu, Z Lin
IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (3), 3604-3616, 2022
202022
Towards efficient scene understanding via squeeze reasoning
X Li, X Li, A You, L Zhang, G Cheng, K Yang, Y Tong, Z Lin
IEEE Transactions on Image Processing 30, 7050-7063, 2021
202021
Dynamical system inspired adaptive time stepping controller for residual network families
Y Yang, J Wu, H Li, X Li, T Shen, Z Lin
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) 34 (04 …, 2020
202020
Explore In-Context Learning for 3D Point Cloud Understanding
Z Fang, X Li, X Li, JM Buhmann, CC Loy, M Liu
Advances in Neural Information Processing Systems (NeurIPS), 2023
182023
R^2 Net Recurrent and Recursive Network for Sparse View CT Artifacts Removal
T Shen, X Li, Z Zhong, J Wu, Z Lin
Proceedings of Medical Image Computing and Computer Assisted Interventions …, 2019
162019
Co-Evolution of Pose and Mesh for 3D Human Body Estimation from Video
Y You, H Liu, T Wang, W Li, R Ding, X Li
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023
102023
Skeleton-in-context: Unified skeleton sequence modeling with in-context learning
X Wang, Z Fang, X Li, X Li, C Chen, M Liu
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
82024
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20