Folgen
William Agnew
William Agnew
Bestätigte E-Mail-Adresse bei cs.washington.edu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Documenting large webtext corpora: A case study on the colossal clean crawled corpus
J Dodge, M Sap, A Marasović, W Agnew, G Ilharco, D Groeneveld, ...
arXiv preprint arXiv:2104.08758, 2021
4412021
The values encoded in machine learning research
A Birhane, P Kalluri, D Card, W Agnew, R Dotan, M Bao
2022 ACM Conference on Fairness, Accountability, and Transparency, 173-184, 2022
3272022
Evaluating the Social Impact of Generative AI Systems in Systems and Society
I Solaiman, Z Talat, W Agnew, L Ahmad, D Baker, SL Blodgett, ...
arXiv preprint arXiv:2306.05949, 2023
117*2023
Robots Enact Malignant Stereotypes
A Hundt, W Agnew, V Zeng, S Kacianka, M Gombolay
2022 ACM Conference on Fairness, Accountability, and Transparency, 743-756, 2022
562022
The illusion of artificial inclusion
W Agnew, AS Bergman, J Chien, M Díaz, S El-Sayed, J Pittman, ...
Proceedings of the CHI Conference on Human Factors in Computing Systems, 1-12, 2024
30*2024
Queer In AI: A Case Study in Community-Led Participatory AI
OO Queerinai, A Ovalle, A Subramonian, A Singh, C Voelcker, ...
Proceedings of the 2023 ACM Conference on Fairness, Accountability, and …, 2023
30*2023
Amodal 3d reconstruction for robotic manipulation via stability and connectivity
W Agnew, C Xie, A Walsman, O Murad, Y Wang, P Domingos, S Srinivasa
Conference on Robot Learning, 1498-1508, 2021
242021
Representation in AI Evaluations
AS Bergman, LA Hendricks, M Rauh, B Wu, W Agnew, M Kunesch, I Duan, ...
Proceedings of the 2023 ACM Conference on Fairness, Accountability, and …, 2023
182023
The Surveillance AI Pipeline
PR Kalluri, W Agnew, M Cheng, K Owens, L Soldaini, A Birhane
arXiv preprint arXiv:2309.15084, 2023
122023
Bound by the Bounty: Collaboratively Shaping Evaluation Processes for Queer AI Harms
N Dennler, A Ovalle, A Singh, L Soldaini, A Subramonian, H Tu, W Agnew, ...
Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, 375-386, 2023
122023
Who's in and who's out? A case study of multimodal CLIP-filtering in DataComp
R Hong, W Agnew, T Kohno, J Morgenstern
arXiv preprint arXiv:2405.08209, 2024
52024
Unsupervised Object-Level Deep Reinforcement Learning
W Agnew, P Domingos
NeurIPS Workshop on Deep RL, 2018
42018
An ensemble-based recommendation engine for scientific data transfers
W Agnew, M Fischer, I Foster, K Chard
2016 Seventh International Workshop on Data-Intensive Computing in the …, 2016
32016
Relevance-Guided Modeling of Object Dynamics for Reinforcement Learning
W Agnew, P Domingos
arXiv preprint arXiv:2003.01384, 2020
2*2020
Technologies of Resistance to AI
W Agnew, KR McKee, J Kay
2*
Data Defenses Against Large Language Models
W Agnew, HH Jiang, C Sum, M Sap, S Das
arXiv preprint arXiv:2410.13138, 2024
2024
Sound Check: Auditing Audio Datasets
W Agnew, J Barnett, A Chu, R Hong, M Feffer, R Netzorg, HH Jiang, ...
arXiv preprint arXiv:2410.13114, 2024
2024
'Simulacrum of Stories': Examining Large Language Models as Qualitative Research Participants
S Kapania, W Agnew, M Eslami, H Heidari, S Fox
arXiv preprint arXiv:2409.19430, 2024
2024
What Can AI Ethics Learn from Anarchism?
W Agnew
XRDS: Crossroads, The ACM Magazine for Students 30 (4), 22-25, 2024
2024
The Surveillance AI Pipeline
P Ria Kalluri, W Agnew, M Cheng, K Owens, L Soldaini, A Birhane
arXiv e-prints, arXiv: 2309.15084, 2023
2023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20