Temporal graph benchmark for machine learning on temporal graphs S Huang, F Poursafaei, J Danovitch, M Fey, W Hu, E Rossi, J Leskovec, ... Advances in Neural Information Processing Systems 36, 2024 | 78 | 2024 |
The surprising performance of simple baselines for misinformation detection K Pelrine, J Danovitch, R Rabbany Proceedings of the Web Conference 2021, 3432-3441, 2021 | 66 | 2021 |
Fast and attributed change detection on dynamic graphs with density of states S Huang, J Danovitch, G Rabusseau, R Rabbany Pacific-Asia Conference on Knowledge Discovery and Data Mining, 15-26, 2023 | 6 | 2023 |
Linking social media posts to news with siamese transformers J Danovitch arXiv preprint arXiv:2001.03303, 2020 | 4 | 2020 |
Trouble with the Curve: Predicting Future MLB Players Using Scouting Reports J Danovitch 2019 Carnegie Mellon Sports Analytics Conference, 2019 | 3 | 2019 |
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs J Gastinger, S Huang, M Galkin, E Loghmani, A Parviz, F Poursafaei, ... arXiv preprint arXiv:2406.09639, 2024 | 1 | 2024 |
Design Space Exploration of Graph Neural Networks for Inductive Link Prediction J Danovitch McGill University (Canada), 2023 | | 2023 |
ComplexDataLab at W-NUT 2020 Task 2: Detecting Informative COVID-19 Tweets by Attending over Linked Documents K Pelrine, J Danovitch, AO Camacho, R Rabbany Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020 …, 2020 | | 2020 |