Albert Rigosi
Albert Rigosi
Bestätigte E-Mail-Adresse bei
Zitiert von
Zitiert von
Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer
A Chernikov, TC Berkelbach, HM Hill, A Rigosi, Y Li, B Aslan, ...
Physical review letters 113 (7), 076802, 2014
Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: , , , and
Y Li, A Chernikov, X Zhang, A Rigosi, HM Hill, AM Van Der Zande, ...
Physical Review B 90 (20), 205422, 2014
Coulomb engineering of the bandgap and excitons in two-dimensional materials
A Raja, A Chaves, J Yu, G Arefe, HM Hill, AF Rigosi, TC Berkelbach, ...
Nature communications 8 (1), 15251, 2017
Valley Splitting and Polarization by the Zeeman Effect in Monolayer
Y Li, J Ludwig, T Low, A Chernikov, X Cui, G Arefe, YD Kim, ...
Physical review letters 113 (26), 266804, 2014
Population inversion and giant bandgap renormalization in atomically thin WS2 layers
A Chernikov, C Ruppert, HM Hill, AF Rigosi, TF Heinz
Nature Photonics 9 (7), 466-470, 2015
Electrical Tuning of Exciton Binding Energies in Monolayer
A Chernikov, AM Van Der Zande, HM Hill, AF Rigosi, A Velauthapillai, ...
Physical review letters 115 (12), 126802, 2015
Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy
HM Hill, AF Rigosi, C Roquelet, A Chernikov, TC Berkelbach, ...
Nano letters 15 (5), 2992-2997, 2015
Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2/WS2 and MoSe2/WSe2
AF Rigosi, HM Hill, Y Li, A Chernikov, TF Heinz
Nano letters 15 (8), 5033-5038, 2015
Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy
HM Hill, AF Rigosi, KT Rim, GW Flynn, TF Heinz
Nano letters 16 (8), 4831-4837, 2016
The Role of Electronic and Phononic Excitation in the Optical Response of Monolayer WS2 after Ultrafast Excitation
C Ruppert, A Chernikov, HM Hill, AF Rigosi, TF Heinz
Nano Letters 17 (2), 644-651, 2017
Electronic band gaps and exciton binding energies in monolayer M o x W 1− x S 2 transition metal dichalcogenide alloys probed by scanning tunneling and optical spectroscopy
AF Rigosi, HM Hill, KT Rim, GW Flynn, TF Heinz
Physical Review B 94 (7), 075440, 2016
Enhancement of Exciton–Phonon Scattering from Monolayer to Bilayer WS2
A Raja, M Selig, G Berghauser, J Yu, HM Hill, AF Rigosi, LE Brus, A Knorr, ...
Nano letters 18 (10), 6135-6143, 2018
The quantum Hall effect in the era of the new SI
AF Rigosi, RE Elmquist
Semiconductor science and technology 34 (9), 093004, 2019
Next-generation crossover-free quantum Hall arrays with superconducting interconnections
M Kruskopf, AF Rigosi, AR Panna, M Marzano, D Patel, H Jin, DB Newell, ...
Metrologia 56 (6), 065002, 2019
Exciton broadening in /graphene heterostructures
HM Hill, AF Rigosi, A Raja, A Chernikov, C Roquelet, TF Heinz
Physical Review B 96 (20), 205401, 2017
Two-terminal and multi-terminal designs for next-generation quantized Hall resistance standards: contact material and geometry
M Kruskopf, AF Rigosi, AR Panna, DK Patel, H Jin, M Marzano, M Berilla, ...
IEEE transactions on electron devices 66 (9), 3973-3977, 2019
Gateless and reversible Carrier density tunability in epitaxial graphene devices functionalized with chromium tricarbonyl
AF Rigosi, M Kruskopf, HM Hill, H Jin, BY Wu, PE Johnson, S Zhang, ...
Carbon 142, 468-474, 2019
Phonon origin and lattice evolution in charge density wave states
HM Hill, S Chowdhury, JR Simpson, AF Rigosi, DB Newell, H Berger, ...
Physical Review B 99 (17), 174110, 2019
Graphene devices for tabletop and high-current quantized Hall resistance standards
AF Rigosi, AR Panna, SU Payagala, M Kruskopf, ME Kraft, GR Jones, ...
IEEE transactions on instrumentation and measurement 68 (6), 1870-1878, 2018
Comparison between NIST graphene and AIST GaAs quantized Hall devices
T Oe, AF Rigosi, M Kruskopf, BY Wu, HY Lee, Y Yang, RE Elmquist, ...
IEEE transactions on instrumentation and measurement 69 (6), 3103-3108, 2019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20