Emma Schmidgall
Emma Schmidgall
Microsoft; University of Washington; Technion Israel Institute of Technology
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
B Huang, G Clark, E Navarro-Moratalla, DR Klein, R Cheng, KL Seyler, ...
Nature 546 (7657), 270-273, 2017
Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
D Zhong, KL Seyler, X Linpeng, R Cheng, N Sivadas, B Huang, ...
Science advances 3 (5), e1603113, 2017
Deterministic Generation of a Cluster State of Entangled Photons
I Schwartz, D Cogan, ER Schmidgall, Y Don, L Gantz, O Kenneth, ...
Science, 2016
Population Inversion in a Single InGaAs Quantum Dot Using<? format?> the Method of Adiabatic Rapid Passage
Y Wu, IM Piper, M Ediger, P Brereton, ER Schmidgall, PR Eastham, ...
Physical Review Letters 106 (6), 067401, 2011
Graphene–graphite oxide field-effect transistors
B Standley, A Mendez, E Schmidgall, M Bockrath
Nano Letters 12 (3), 1165-1169, 2012
Deterministic Writing and Control of the Dark Exciton Spin Using Single Short Optical Pulses
I Schwartz, ER Schmidgall, L Gantz, D Cogan, E Bordo, Y Don, M Zielinski, ...
Physical Review X 5, 011009, 2015
Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated GaP-on-diamond platform
M Gould, ER Schmidgall, S Dadgostar, F Hatami, KMC Fu
Phys. Rev. Applied 6 (1), 011001, 2016
On-demand source of maximally entangled photon-pairs using the biexciton-exciton radiative cascade
R Winik, D Cogan, Y Don, I Schwartz, L Gantz, ER Schmidgall, N Livneh, ...
Physical Review B 95, 235435, 2017
400%/W second harmonic conversion efficiency in 14 μm-diameter gallium phosphide-on-oxide resonators
AD Logan, M Gould, ER Schmidgall, K Hestroffer, Z Lin, W Jin, ...
Optics express 26 (26), 33687-33699, 2018
Frequency control of single quantum emitters in integrated photonic circuits
ER Schmidgall, S Chakravarthi, M Gould, IR Christen, K Hestroffer, ...
Nano letters 18 (2), 1175-1179, 2018
Population inversion in quantum dot ensembles via adiabatic rapid passage
ER Schmidgall, PR Eastham, RT Phillips
Physical Review B—Condensed Matter and Materials Physics 81 (19), 195306, 2010
Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses
A Schlehahn, R Schmidt, C Hopfmann, JH Schulze, A Strittmatter, ...
Applied Physics Letters 108 (2), 2016
Accessing the dark exciton spin in deterministic quantum-dot microlenses
T Heindel, A Thoma, I Schwartz, ER Schmidgall, L Gantz, D Cogan, ...
Apl Photonics 2 (12), 2017
Deterministic coherent writing of a long-lived semiconductor spin qubit using one ultrafast optical pulse
I Schwartz, D Cogan, ER Schmidgall, L Gantz, Y Don, M Zieliński, ...
Physical Review B 92 (20), 201201, 2015
All-optical depletion of dark excitons from a semiconductor quantum dot
ER Schmidgall, I Schwartz, D Cogan, L Gantz, T Heindel, S Reitzenstein, ...
Applied Physics Letters 106 (19), 193101, 2015
Deterministic generation of a quantum-dot-confined triexciton and its radiative decay via three-photon cascade
ER Schmidgall, I Schwartz, L Gantz, D Cogan, S Raindel, D Gershoni
Physical Review B 90 (24), 241411(R), 2014
Optical control of single excitons in semiconductor quantum dots
Y Kodriano, ER Schmidgall, Y Benny, D Gershoni
Semiconductor Science and Technology 29 (5), 053001, 2014
Controlling the dark exciton spin eigenstates by external magnetic field
L Gantz, ER Schmidgall, I Schwartz, Y Don, E Waks, G Bahir, D Gershoni
Physical Review B 94 (4), 045426, 2016
Coherent control of dark excitons in semiconductor quantum dots
ER Schmidgall, I Schwartz, D Cogan, L Gantz, Y Don, D Gershoni
Quantum Dots for Quantum Information Technologies, 123-164, 2017
Selection rules for nonradiative carrier relaxation processes in semiconductor quantum dots
ER Schmidgall, Y Benny, I Schwartz, R Presman, L Gantz, Y Don, ...
Physical Review B 93 (24), 245437, 2016
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20