Folgen
Adithya M Devraj
Adithya M Devraj
Ford Motor Company
Bestätigte E-Mail-Adresse bei stanford.edu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Zap Q-learning
AM Devraj, S Meyn
Advances in Neural Information Processing Systems 30, 2017
1042017
Fastest convergence for Q-learning
AM Devraj, SP Meyn
arXiv preprint arXiv:1707.03770, 2017
462017
Explicit mean-square error bounds for monte-carlo and linear stochastic approximation
S Chen, A Devraj, A Busic, S Meyn
International Conference on Artificial Intelligence and Statistics, 4173-4183, 2020
382020
Reinforcement learning for control of building HVAC systems
NS Raman, AM Devraj, P Barooah, SP Meyn
2020 American Control Conference (ACC), 2326-2332, 2020
372020
Model-free primal-dual methods for network optimization with application to real-time optimal power flow
Y Chen, A Bernstein, A Devraj, S Meyn
2020 American Control Conference (ACC), 3140-3147, 2020
322020
Fundamental design principles for reinforcement learning algorithms
AM Devraj, A Bušić, S Meyn
Handbook of Reinforcement Learning and Control, 75-137, 2021
202021
Zap Q-Learning with nonlinear function approximation
S Chen, AM Devraj, F Lu, A Busic, S Meyn
Advances in Neural Information Processing Systems 33, 16879-16890, 2020
192020
The ODE method for asymptotic statistics in stochastic approximation and reinforcement learning
V Borkar, S Chen, A Devraj, I Kontoyiannis, S Meyn
arXiv preprint arXiv:2110.14427, 2021
182021
Learning techniques for feedback particle filter design
A Radhakrishnan, A Devraj, S Meyn
2016 IEEE 55th Conference on Decision and Control (CDC), 5453-5459, 2016
172016
Zap Q-Learning-a user's guide
AM Devraj, A Bušić, S Meyn
2019 Fifth Indian Control Conference (ICC), 10-15, 2019
162019
Differential TD learning for value function approximation
AM Devraj, SP Meyn
Decision and Control (CDC), 2016 IEEE 55th Conference on, 6347-6354, 2016
162016
On matrix momentum stochastic approximation and applications to Q-learning
AM Devraj, A Bušić, S Meyn
2019 57th Annual Allerton Conference on Communication, Control, and …, 2019
15*2019
Stochastic variance reduced primal dual algorithms for empirical composition optimization
AM Devraj, J Chen
Advances in Neural Information Processing Systems 32, 2019
142019
Q-learning with uniformly bounded variance
AM Devraj, SP Meyn
IEEE Transactions on Automatic Control 67 (11), 5948-5963, 2021
132021
Q-learning with uniformly bounded variance: Large discounting is not a barrier to fast learning
AM Devraj, SP Meyn
arXiv preprint arXiv:2002.10301, 2020
132020
Differential temporal difference learning
AM Devraj, I Kontoyiannis, SP Meyn
IEEE Transactions on Automatic Control 66 (10), 4652-4667, 2020
112020
Accelerating optimization and reinforcement learning with quasi stochastic approximation
S Chen, A Devraj, A Bernstein, S Meyn
2021 American Control Conference (ACC), 1965-1972, 2021
102021
Power allocation in energy harvesting sensors with ARQ: A convex optimization approach
AM Devraj, MK Sharma, CR Murthy
2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP …, 2014
102014
Zap Q-Learning for optimal stopping
S Chen, AM Devraj, A Bušić, S Meyn
2020 American Control Conference (ACC), 3920-3925, 2020
92020
Zap q-learning with nonlinear function approximation
S Chen, AM Devraj, F Lu, A Bušić, SP Meyn
arXiv preprint arXiv:1910.05405, 2019
92019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20