Neural Spline Flows C Durkan, A Bekasov, I Murray, G Papamakarios
Advances in Neural Information Processing Systems 32, 7509-7520, 2019
826 2019 Maximum Likelihood Training of Score-Based Diffusion Models Y Song, C Durkan, I Murray, S Ermon
Advances in Neural Information Processing Systems 34, 1415-1428, 2021
562 2021 --a toolkit for simulation-based inferenceA Tejero-Cantero, J Boelts, M Deistler, JM Lueckmann, C Durkan, ...
Journal of Open Source Software 5 (52), 2505, 2020
281 * 2020 On Contrastive Learning for Likelihood-Free Inference C Durkan, I Murray, G Papamakarios
Proceedings of the 37th International Conference on Machine Learning 119 …, 2020
133 2020 Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC Y Du, C Durkan, R Strudel, JB Tenenbaum, S Dieleman, R Fergus, ...
Proceedings of the 40th International Conference on Machine Learning, 2023
116 2023 nflows: normalizing flows in PyTorch C Durkan, A Bekasov, I Murray, G Papamakarios
Version v0 14, 2020
98 * 2020 Cubic-Spline Flows C Durkan, A Bekasov, I Murray, G Papamakarios
1st Workshop on Invertible Neural Networks and Normalizing Flows (ICML), 2019
86 2019 Continuous diffusion for categorical data S Dieleman, L Sartran, A Roshannai, N Savinov, Y Ganin, PH Richemond, ...
arXiv preprint arXiv:2211.15089, 2022
82 2022 Autoregressive Energy Machines C Nash, C Durkan
Proceedings of the 36th International Conference on Machine Learning 97 …, 2019
66 2019 Optical ultrafast random number generation at 1 Tb/s using a turbulent semiconductor ring cavity laser T Butler, C Durkan, D Goulding, S Slepneva, B Kelleher, SP Hegarty, ...
Optics letters 41 (2), 388-391, 2016
60 2016 Sequential Neural Methods for Likelihood-Free Inference C Durkan, G Papamakarios, I Murray
3rd workshop on Bayesian Deep Learning (NeurIPS), 2018
30 2018