Quenched invariance principle for simple random walk on percolation clusters N Berger, M Biskup Probability Theory and Related Fields 137, 83-120, 2007 | 261 | 2007 |
Recent progress on the random conductance model M Biskup Probability Surveys 8, 294-373, 2011 | 248 | 2011 |
On the scaling of the chemical distance in long-range percolation models M Biskup Annals of Probability 32 (4), 2938-2977, 2004 | 163 | 2004 |
Functional CLT for random walk among bounded random conductances M Biskup, T Prescott Electronic Journal of Probability 12, 1323-1348, 2007 | 137 | 2007 |
Extreme local extrema of two-dimensional discrete Gaussian free field M Biskup, O Louidor Communications in Mathematical Physics 345, 271-304, 2016 | 111 | 2016 |
On the formation/dissolution of equilibrium droplets M Biskup, L Chayes, R Kotecký Europhysics Letters 60 (1), 21, 2002 | 108 | 2002 |
Anomalous heat-kernel decay for random walk among bounded random conductances N Berger, M Biskup, CE Hoffman, G Kozma Annales de l'IHP Probabilités et statistiques 44 (2), 374-392, 2008 | 102 | 2008 |
Long-time tails in the parabolic Anderson model with bounded potential M Biskup, W Konig Annals of Probability 29 (2), 636-682, 2001 | 98 | 2001 |
Orbital order in classical models of transition-metal compounds Z Nussinov, M Biskup, L Chayes, J van den Brink Europhysics Letters 67 (6), 990, 2004 | 97 | 2004 |
General theory of Lee-Yang zeros in models with first-order phase transitions M Biskup, C Borgs, JT Chayes, LJ Kleinwaks, R Kotecký Physical Review Letters 84 (21), 4794, 2000 | 93 | 2000 |
Reflection positivity and phase transitions in lattice spin models M Biskup, A Bovier, F den Hollander, D Ioffe, F Martinelli, K Netočný, ... Methods of contemporary mathematical statistical physics, 1-86, 2009 | 91 | 2009 |
Full extremal process, cluster law and freezing for the two-dimensional discrete Gaussian free field M Biskup, O Louidor Advances in Mathematics 330, 589-687, 2018 | 82 | 2018 |
Phase coexistence of gradient Gibbs states M Biskup, R Kotecký Probability Theory and Related Fields 139 (1-2), 1-39, 2007 | 80 | 2007 |
Extrema of the two-dimensional discrete Gaussian free field M Biskup Random Graphs, Phase Transitions, and the Gaussian Free Field: PIMS-CRM …, 2020 | 77 | 2020 |
Scaling limit for a class of gradient fields with nonconvex potentials M Biskup, H Spohn Annals of Probability 39 (1), 224-251, 2011 | 70 | 2011 |
Graph diameter in long‐range percolation M Biskup Random Structures & Algorithms 39 (2), 210-227, 2011 | 69 | 2011 |
Mean-field driven first-order phase transitions in systems with long-range interactions M Biskup, L Chayes, N Crawford Journal of Statistical Physics 122, 1139-1193, 2006 | 60 | 2006 |
Conformal symmetries in the extremal process of two-dimensional discrete Gaussian free field M Biskup, O Louidor Communications in Mathematical Physics 375 (1), 175-235, 2020 | 59* | 2020 |
A heteropolymer near a linear interface M Biskup, F den Hollander Annals of Applied Probability, 668-687, 1999 | 58 | 1999 |
Critical region for droplet formation in the two-dimensional Ising model M Biskup, L Chayes, R Kotecký Communications in mathematical physics 242, 137-183, 2003 | 57 | 2003 |